4,684 research outputs found

    Assessing the climate impacts of Chinese dietary choices using a telecoupled global food trade and local land use framework

    Get PDF
    Global emissions trajectories developed to meet the 2⁰C temperature target are likely to rely on the widespread deployment of negative emissions technologies and/or the implementation of substantial terrestrial carbon sinks. Such technologies include afforestation, carbon capture and storage (CCS) and bioenergy with carbon capture and storage (BECCS), but mitigation options for agriculture appear limited. For example, using the Global Calculator tool (http://www.globalcalculator.org/), under a 2⁰C pathway, the ‘forests and other land use’ sector is projected to become a major carbon sink, reaching -15 GtCO2e yr-1 by 2050, compared to fossil emissions of 21 GtCO2e yr-1. At the same time, rates of agricultural emissions remain static at about 6 GtCO2e yr-1, despite increasing demands for crop and livestock production to meet the forecast dietary demands of the growing and increasingly wealthy global population. Emissions in the Global Calculator are sensitive to the assumed global diet, and particularly to the level and type of meat consumption, which in turn drive global land use patterns and agricultural emissions. Here we assess the potential to use a modified down-scaled Global Calculator methodology embedded within the telecoupled global food trade framework, to estimate the agricultural emissions and terrestrial carbon stock impacts in China and Brazil, arising from a plausible range of dietary choices in China. These dietary choices are linked via telecoupling mechanisms to Brazilian crop production (e.g. Brazilian soy for Chinese animal feed provision) and drive land and global market dynamics. ‘Spill-over’ impacts will also be assessed using the EU and Malawi as case studies

    Algebraic Shape Invariant Models

    Get PDF
    Motivated by the shape invariance condition in supersymmetric quantum mechanics, we develop an algebraic framework for shape invariant Hamiltonians with a general change of parameters. This approach involves nonlinear generalizations of Lie algebras. Our work extends previous results showing the equivalence of shape invariant potentials involving translational change of parameters with standard SO(2,1)SO(2,1) potential algebra for Natanzon type potentials.Comment: 8 pages, 2 figure

    The Schwinger Representation of a Group: Concept and Applications

    Full text link
    The concept of the Schwinger Representation of a finite or compact simple Lie group is set up as a multiplicity-free direct sum of all the unitary irreducible representations of the group. This is abstracted from the properties of the Schwinger oscillator construction for SU(2), and its relevance in several quantum mechanical contexts is highlighted. The Schwinger representations for SU(2),SO(3)SU(2), SO(3) and SU(n) for all nn are constructed via specific carrier spaces and group actions. In the SU(2) case connections to the oscillator construction and to Majorana's theorem on pure states for any spin are worked out. The role of the Schwinger Representation in setting up the Wigner-Weyl isomorphism for quantum mechanics on a compact simple Lie group is brought out.Comment: Latex, 17 page

    An Empirical Analysis of Security Issues in Cloud Environment

    Full text link
    Cloud Computing is a flexible, cost-effective, and proven delivery platform for providing business or consumer IT services over the Internet. However, cloud Computing presents an added level of risk because essential services are often outsourced to a third party, which makes it harder to maintain data security and privacy, support data and service availability, and demonstrate compliance. Cloud Computing leverages many technologies (SOA, virtualization, Web 2.0); it also inherits their security issues, which we discuss here, identifying the main vulnerabilities in this kind of systems and the most important threats found in the literature related to Cloud Computing and its environment as well as to identify and relate vulnerabilities and threats with possible solutions

    Temperature effects on mixed state geometric phase

    Full text link
    Geometric phase of an open quantum system that is interacting with a thermal environment (bath) is studied through some simple examples. The system is considered to be a simple spin-half particle which is weakly coupled to the bath. It is seen that even in this regime the geometric phase can vary with temperature. In addition, we also consider the system under an adiabatically time-varying magnetic field which is weakly coupled to the bath. An important feature of this model is that it reveals existence of a temperature-scale in which adiabaticity condition is preserved and beyond which the geometric phase is varying quite rapidly with temperature. This temperature is exactly the one in which the geometric phase vanishes. This analysis has some implications in realistic implementations of geometric quantum computation.Comment: 5 page

    Uncertainties in nuclear transition matrix elements for neutrinoless ÎČÎČ\beta \beta decay II: the heavy Majorana neutrino mass mechanism

    Full text link
    Employing four different parametrization of the pairing plus multipolar type of effective two-body interaction and three different parametrizations of Jastrow-type of short range correlations, the uncertainties in the nuclear transition matrix elements MN(0Îœ)M_{N}^{(0\nu)} due to the exchange of heavy Majorana neutrino for the 0+→0+0^{+}\rightarrow 0^{+} transition of neutrinoless double beta decay of 94^{94}Zr, 96^{96}Zr, 98^{98}Mo, 100^{100}Mo, 104^{104}Ru, 110^{110}Pd, 128,130^{128,130}Te and 150^{150}Nd isotopes in the PHFB model are estimated to be around 25%. Excluding the nuclear transition matrix elements calculated with Miller-Spenser parametrization of Jastrow short range correlations, the uncertainties are found to be 10%-15% smaller

    Particle alignments and shape change in 66^{66}Ge and 68^{68}Ge

    Full text link
    The structure of the N≈ZN \approx Z nuclei 66^{66}Ge and 68^{68}Ge is studied by the shell model on a spherical basis. The calculations with an extended P+QQP+QQ Hamiltonian in the configuration space (2p3/22p_{3/2}, 1f5/21f_{5/2}, 2p1/22p_{1/2}, 1g9/21g_{9/2}) succeed in reproducing experimental energy levels, moments of inertia and QQ moments in Ge isotopes. Using the reliable wave functions, this paper investigates particle alignments and nuclear shapes in 66^{66}Ge and 68^{68}Ge. It is shown that structural changes in the four sequences of the positive- and negative-parity yrast states with even JJ and odd JJ are caused by various types of particle alignments in the g9/2g_{9/2} orbit. The nuclear shape is investigated by calculating spectroscopic QQ moments of the first and second 2+2^+ states, and moreover the triaxiality is examined by the constrained Hatree-Fock method. The changes of the first band crossing and the nuclear deformation depending on the neutron number are discussed.Comment: 18 pages, 21 figures; submitted to Phys. Rev.

    Biomass Estimation of Dry Tropical Woody Species at Juvenile Stage

    Get PDF
    Accurate characterization of biomass in different forest components is important to estimate their contribution to total carbon stock. Due to lack of allometric equations for biomass estimation of woody species at juvenile stage, the carbon stored in this forest component is ignored. We harvested 47 woody species at juvenile stage in a dry tropical forest and developed regression models for the estimation of above-ground biomass (AGB). The models including wood-specific gravity (ρ) exhibited higher R2 than those without ρ. The model consisting of ρ, stem diameter (D), and height (H) not only exhibited the highest R2 value but also had the lowest standard error of estimate. We suggest that ρ-based regression model is a viable option for nondestructive estimation of biomass of forest trees at juvenile stage
    • 

    corecore